

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

January 16, 2009

Mr. Brian Hancock Sent via E-mail

U.S. Election Assistance Commission

Voting System Testing and Certification Program

1225 New York Avenue, NW, Suite 110

Washington, DC 20005

Mr. Hancock,

The purpose of this letter is to document the 3% review of the Unity 3.2.0.0 source code in

accordance with your 21 November 2008 email providing instruction on the reuse of testing for

the ES&S certification effort. This letter also provides the iBeta recommendation to the EAC

regarding the reuse of the source code review conducted by SysTest.

Documentation of the Review Process

To conduct the review, iBeta used our PCA Source Code Review Procedure. The source code

was delivered from SysTest Labs and configuration managed in the iBeta Source Code

Repository. With the exception of Cobol, the coding languages submitted for review had been

previously reviewed on other certification test efforts therefore the previously used interpretation

of the generic VSS requirements to the language specific review criteria were utilized

unmodified. For the Cobol review, iBeta provided the interpretation of each VSS requirement to

ES&S prior to initiating the source code review task. The language specific review criteria for

each of the five languages is not attached to this letter and will be provided if deemed necessary

for the EAC review. The VSS requirements applicable to the source code review task are:

VSS

Vol. # Section(s) #

1 4.2.2

1 4.2.3

1 4.2.4

1 4.2.5

1 4.2.6

1 4.2.7

1 6.2

1 6.4.2

2 2.5.4d

2 5.4.2

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

To select the 3% for review, iBeta conducted an analysis by first using a library of static analysis

tools to parse each application source code base and provide a list of the files and functions as

well as the Lines of Code (LOC) count. iBeta uses executable LOCs only and does not include

comment, blank, or continued lines in our metrics. An exception to this process was the Cobol

applications as our library of static analysis tools do not address Cobol source code. For those

two applications, the number of files and files sizes were used to determine the volume of code

in order to select 3%.

Once the spreadsheets were populated for each application, a selection of files/functions was

made based on the file header information documenting the file purpose. iBeta focused the

review by selecting source code files and functions that process vote data, audit logs, and

reporting.

The ES&S AutoMARK source code submitted was compared against the source code submitted

with the Premier certification effort as the code is similar. The differences between those two

source code bases were then reviewed as part of the ES&S 3% source code review. The

unique as well as the shared application discrepancies are reported herein.

The peer review of each Source Code Review was conducted by experienced reviewers who

had reviewed source code to the VSS requirements on a minimum of two VSTL test efforts.

Based on the instruction in your 21 November 2008 email "This review will focus on important

functional sections of the code in order to determine the depth and focus of source review

conducted by SysTest", the peer review analyzed each instance of non-compliance with the

VSS requirements and assessed if the issue impacted source code logic. Discrepancies that

dealt with comments, headers, formatting, and style were accepted as non-logic issues and

color coded as green. Potential logic issues were flagged as needing an EAC decision and

color coded as yellow. Confirmed logic issues were to be flagged as red (no confirmed logic

issues were identified).

The matrix of the source code reviewed is provided as Attachment 1 and each individual

discrepancy spreadsheet is provided as a separate confidential compressed file delivered on

CD subsequent to the email delivery of this letter.

Summary of 3% Source Code Review Results

A total of 330 discrepancies were identified with the majority, 307 or 93%, categorized as non-

logic issues. The summary of discrepancies categorized as EAC Decision Discrepancies as

well as the vendor responses are provided as Attachment 2 to this letter.

Of the 21 of 23 potential logic discrepancies, ES&S has provided in their response their

justification for non complying with the requirement or their disagreement of the iBeta

interpretation of the VSS requirements. Precedence for the iBeta interpretation has been

established with testing for other clients and these established interpretations must be applied

consistently to all manufacturers under test with iBeta. We do acknowledge that in some

instances another interpretation may be possible and that alternative interpretation may be

acceptable to the EAC reviewers.

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

The remaining 2 potential logic discrepancies remain under investigation by both Premier and

ES&S and are expected to be addressed within the Premier source code review letter.

Recommendation Regarding the Reuse of the SysTest Source Code Review

In order to provide a recommendation, iBeta evaluated the results of the 3% source code review

whereas the results would be recommended as accepted if no significant discrepancies were

found, this includes the less critical requirement which were not addressed, not recorded or

interpretations are inconsistent with documenting industry accepted practices. As there were

discrepancies written that potentially impact the source code, two other analyses were

conducted:

1. Confirmed that the results of the iBeta review of the 3% of code are consistent with

the previous results (not identical but consistent): This confirmation was reached by

reviewing the types of discrepancies generated by SysTest in the 100% review against

those generated by iBeta.

2. Reviewed the severity of the discrepancies discovered: The number of discrepancies

potentially impacting the source code is considered very low versus the overall number

of discrepancies (as is consistent with a 100% review). The severity of the

discrepancies and the vendor responses do indicate that the majority of those 21

potential logic discrepancies would be resolved without source code modifications.

Based on the limited impact (or perhaps no impact) on the source code as a result of these

discrepancies, iBeta recommends reuse of the results of the SysTest source code.

Sincerely,

Gail Audette

iBeta Quality Manager

Attachment 1: Matrix of Source Code Reviewed

Attachment 2: Summary of Discrepancies

Enclosure: CONFIDENTIAL CD Source Code Review Discrepancies 1-16-09.zip

cc: Steve Pearson, ES&S

 Sue Munguia, ES&S

CONFIDENTIAL - Attachment 1: Matrix of Source Code Reviewed - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

Product
Source
Code

Language

Version
of Code

Submitted
to VSTL

Date
 Code

Submitted
to VSTL

Spreadsheet
Lines

Reviewed
Total
Lines

Total
Issues

EAC
Issues

 Unity 3.2.0.0 Software
 AutoMARK Information

System (AIMS) Various
1.3.57 08/16/07

Shared application 887 26539 9 2
 SQL SQL AIMS 1.3.54 08062007 2 2
 CS to few lines to review 0 38 0 0

 C++

CPP AIMSCrypt 1.0.0.1
10152008 16 400 2 0

Audit Manager VB
7.5.0.0g 07/31/07

VB AuditManager 7.5.0.0g
07312007 138 3556 0 0

 EDM C++ 7.8.0.0j 07/31/07 CPP EDM 7.8.0.0j 073107 2539 72879 6 1
 ESSXML.DLL C++

2.1.0.0b 06/04/07
CPP EDM ESSXML 2.1.0.0b
MFC Shared 1.1.0.0a 06042007 111 2870 1 0

 MFC Shared Source C++ 1.1.0.0a 06/04/07 CPP EDM ESSXML 2.1.0.0b MFC Shared 1.1.0.0a 06042007

 ESSIM C++ 7.7.0.0f 07/18/07 CPP ESSIM 7.7.0.0f 07182007 1196 30546 26 1

 HPM Cobol 5.7.0.0f 05/14/08 Cobol HPM 5.7.0.0f 05182008 178 0

HPMDLL C++
1.0.0.0a 06/11/07

CPP HPM-ERM DLLs 1.0.0.0a
06112007 0 108 0 0

 ERM Cobol 7.5.2.0c 10/24/08 Cobol ERM 7.5.2.0c 53 4

ERMDLL C++
1.0.0.0a 06/11/07

CPP HPM-ERM DLLs 1.0.0.0a
06112007 0 0 0 0

 Shared Utilities
 MAKEIBIN.EXE

C++
9.2.0.0t 08/07/07

CPP Shared Utilities 9.2.2.0
05142008 642 20804 7 2

 UNDRVOTE.EXE C++ 9.2.1.0b 05/31/07 CPP Shared Utilities 9.2.2.0 05142008
 VIOWIN.EXE

C/C++
9.2.0.0b 05/07/07

CPP Shared Utilities vol3
05072007 28 554 3 0

 VIODIALOG.EXE C/C++ 9.2.1.0c 05/14/08 CPP Shared Utilities 9.2.2.0 05142008
 EVENTS.EXE C/C++ 9.2.0.0h 06/19/07

CONFIDENTIAL - Attachment 1: Matrix of Source Code Reviewed - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

 IMAGES.EXE C/C++ 9.2.0.0f 05/16/07
 CF_Utility.EXE VB 9.2.0.0i 05/07/07 VB CF_Utility 9.2.0.0 05072007 261 8004 0 0
 GetAuditData.EXE VB

9.2.0.0b 05/07/07
VB GetAuditData 9.2.0.0b
05072007 46 1264 1 0

 ESSPEB.DLL
C++ 1.0.1.0c 05/15/08

CPP Shared Utilities vol2 1.0.1.0
05142008 478 24872 16 7

 CB_PEB.DLL C++ 1.0.1.0b 05/14/08 CPP Shared Utilities vol2 1.0.1.0 05142008
 CRCDLL.DLL C++

1.4.1.0b 05/07/07
CPP Shared Utilities vol3
05072007

 ESSM100.DLL C/C++ 1.7.1.0c 05/06/08 CPP Shared Utilities vol2 1.0.1.0 05142008
 ESSPCMIO.DLL C++ 1.1.0.0a 08/07/07

 CB_M100.DLL C++ 1.4.0.0a 08/07/07

 ESSEAGL.DLL C++ 1.3.1.0e 07/20/07

 CB_EAGL.DLL C++ 1.3.1.0c 05/31/07

 CB_RAND.DLL C++ 1.1.0.0a 08/07/07

 MYDLL.DLL C 1.1.0.0a 08/07/07 C ESS all Unity 3.2 04282008 538 17750 12 1
 MPRBOOT.HEX Assembler

2.6.1.0b 05/16/07
ASM MPRBOOT 2.6.1.0b
05162007.xls 56 1340 0 0

 ESSCRYPT.DLL C/C++ 1.9.0.0a 07/31/07 CPP Shared Utilities vol2 1.0.1.0 05142008
 ESSDECPT.EXE C++ 1.9.0.0a 07/31/07

 ESSCRPT1.DLL C++ 1.1.0.0b 05/16/07

 ElectionPackager C++ 1.0.0.0e 07/06/07

 ESSZIP C++ 2.0.0.0f 07/06/07

 PCCARD30.EXE C++ 3.5.0.0h 05/14/08

 PBMtoBMP C++ 1.1.0.0c 04/18/08
 WIN650 C++ 2.2.1.0.4 05/31/07

 INIT650.EXE C/C++ 2.2.1.0.4 05/31/07
 SERVE650.EXE (Newserve650) C++ 2.2.1.0.4 05/31/07
 CB_650.DLL C 1.2.0.0a 08/07/07 C ESS all Unity 3.2 04282008
 REGUTIL.DLL C++ 1.1.0.0d 05/31/07 CPP Shared Utilities vol2 1.0.1.0 05142008
 SHELLSETUP.EXE C++ 1.1.0.0a 04/12/07

 SHELL.EXE C++
1.1.0.0b 05/07/07

CPP Shared Utilities vol3
05072007

 EXITWIN.EXE VB 1.1.0.0a 04/12/07 VB ExitWin 1.1.0.0a 04122007 33 469 0 0
 Firmware
 Model 200
 TOS /wo JVM N/A N/A
 DS200 C/C++ 1.3.7.0g 04/23/08 CPP DS200 1.3.7.0g 04282008 386 12552 2 1

CONFIDENTIAL - Attachment 1: Matrix of Source Code Reviewed - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

Power Management_MSP430 C 1.2.0.0a 04/28/08 C DS200 all 1.2.0.0a 04282008 741 20930 3 0
 Scanner_C8051 C 2.11.0.0a 04/28/08 C DS200 all 1.2.0.0a 04282008

 Model 650
 M-650 C 2.2.1.0.5 06/20/07 C ESS all Unity 3.2 04282008

 AutoMARK

AutoMARK-Voter Assist
Terminal (VAT) Various

1.3.2816 09/18/07
CPP VAT (ESS
ScannerPrinterLibrary 1.8.31-
GetMarks 1.4.9) 10152008 679 21026 9 2

 Totals 8775 266501 330 23
 Percentages 3.3% 7%

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

Compiled Discrepancy Report for ES&S

Lang
-uage

Compo
-nent

Version Spread-
sheet

Disc

File Func-
tion

Discrepancy
Description

VSS
Refer-
ence

iBeta
Classificatio
n

ES&S Vendor Response

C WIN650
: folder
07-0531
Shared
Utilities\
WIN650
2.2.1.0.
4\Sourc
e

2.2.1.0.
4

Discrepanci
es C ESS
all Unity 3.2
04282008.x
ls

10 msInit\etp
_rev.c

Permu
te8Byt
es

line 329 hard-coded key. v1:
6.4.2

Hard-coded
key

The hard coded table cited is used in an old scheme
to "scramble" or obfuscate the M650 audit log file
before it is written to the M650 internal file on the
M650 internal RAM drive. The audit log file is printed
in real-time on a continuous form matrix printer and
becomes the audit log of record. This table and its
contents are well commented so it passes the test for
hard constants. This function is not used in any way
to validate or protect the firmware.

Cobol HPM 5.7.0.0f Discrepanci
es Cobol
HPM
5.7.0.0f
05182008.x
ls

23 PE001AL
L.PRC

910-
SET-
EQUIP
-TYPE

Series of ELSE IF
clauses is missing the
final ELSE clause

v.1:
4.2.4.a

iBeta
interpretation
for the
control
contructs
requirement
is violated.

Volume I, Section 4.2.4.a specifies the acceptable
control constructs to be used. One of the listed
acceptable control constructs is If-Then-Else. This
section does not elaborate any further on the
acceptable different forms of syntax for If-Then-Else
statements. It is our belief that the sections of code
cited in this discrepancy are structured, sound, easily
understood and accepted syntax forms of IF-Then-
Else statements.

Cobol HPM 5.7.0.0f Discrepanci
esCobol
HPM
5.7.0.0f
05182008.x
ls

24 PE001AL
L.PRC

911-
GET-
EQUIP
-TYPE

Procedure header
contains ONLY
description no other
required info for
procedure over 10 lines
of code
Series of ELSE IF
clauses is missing the
final ELSE clause
Lines 399,402 and 405
contain non-enumerated
constants

v.1:
4.2.3.b
4.2.7 (a,
a.1-a.6)
v.1:
4.2.4.a
v.2:
5.4.2.u

1. iBeta
interpretation
for the Exit
Point
requirement
is violated.
2. iBeta
interpretation
for the
control
constructs
requirement
is violated.
3. Non-
enum
constants is
acceptable
per
discrepancy
20
explanation.

Volume I, Section 4.2.4.a specifies the acceptable
control constructs to be used. One of the listed
acceptable control constructs is If-Then-Else. This
section does not elaborate any further on the
acceptable different forms of syntax for If-Then-Else
statements. It is our belief that the sections of code
cited in this discrepancy are structured, sound, easily
understood and accepted syntax forms of IF-Then-
Else statements.

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

Cobol HPM 5.7.0.0f Discrepanci
esCobol
HPM
5.7.0.0f
05182008.x
ls

25 PE001AL
L.PRC

912-
SET-
COUN
T-
TYPE

Procedure header
contains ONLY
description no other
required info for
procedure over 10 lines
of code
Series of ELSE IF
clauses is missing the
final ELSE clause
Lines 415, 417, 422,
425, 428, 431, 436, 439,
442, 445,449, 452, 455
and 458 contain non-
enumerated constants

v.1:
4.2.3.b
4.2.7 (a,
a.1-a.6)
v.1:
4.2.4.a
v.2:
5.4.2.u

1. iBeta
interpretation
for the
control
contructs
requirement
is violated.
2. Non-
enum
constants is
acceptable
per
discrepancy
20
explanation.

Volume I, Section 4.2.4.a specifies the acceptable
control constructs to be used. One of the listed
acceptable control constructs is If-Then-Else. This
section does not elaborate any further on the
acceptable different forms of syntax for If-Then-Else
statements. It is our belief that the sections of code
cited in this discrepancy are structured, sound, easily
understood and accepted syntax forms of IF-Then-
Else statements.

Cobol HPM 5.7.0.0f Discrepanci
es Cobol
HPM
5.7.0.0f
05182008.x
ls

26 PE001AL
L.PRC

914-
SET-
VOTE-
FOR

Procedure header
contains ONLY
description no other
required info for
procedure over 10 lines
of code
Series of ELSE IF
clauses is missing the
final ELSE clause
Lines 467, 470 and 473
contain non-enumerated
constants

v.1:
4.2.3.b
4.2.7 (a,
a.1-a.6)
v.1:
4.2.4.a
v.2:
5.4.2.u

1.iBeta
interpretation
for the
control
contructs
requirement
is violated..
2. Non-
enum
constants is
acceptable
per
discrepancy
20
explanation.

Volume I, Section 4.2.4.a specifies the acceptable
control constructs to be used. One of the listed
acceptable control constructs is If-Then-Else. This
section does not elaborate any further on the
acceptable different forms of syntax for If-Then-Else
statements. It is our belief that the sections of code
cited in this discrepancy are structured, sound, easily
understood and accepted syntax forms of IF-Then-
Else statements.

CPP EDM 7.8.0.0j CPP EDM
7.8.0.0j
073107.xls

5 geodlg.cp
p

CGeo
Dlg::O
nClick
edDel
ete

1) multiple embedded
calls in logical statement
at lines 856, 871 2)
Illegal breaks at lines
847, 859, 874, line 880
changes the state of the
system and therefore
break statements are
not allowed. If code
deletes one it must
delete all in order to
complete unit operation
described.

v.1:
4.2.3.ev
.2:
5.4.2.m

Multiple exits This noted discrepancy is an IF statement that tests
the result of several Boolean returning functions.
ES&S does not consider these to be embedded
statements, the functions aren't doing processing in
the sense that they change the state of the system or
change any value. Rather they are functions that
fetch or otherwise determine a value and return the
value. This may be something difficult for a reviewer
to discern so they would just flag it because it is a
function within a conditional expression. As for the
second part of item #5 ES&S would disagree with the
reviewer. No state changes (precinct deleted) are
made until after the conditions that can trigger those
breaks are passed. It is not necessary that all
precincts be deleted from the list in this code.

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

CPP DS200 1.3.7.0g Discrepanci
es CPP
DS200
1.3.7.0g
04232008.x
ls

2 MSP430_
BootLoad
er\src\co
mmand.c
pp

CBSL
Comm
and::A
pply_1
_10_P
atch

Line 540, 587 illegal
write of executable
binary not created
through a trusted build
(or must be proven
COTS) (If MSP430's
version is equal to or
less than version 1.10)

v.1:
4.2.2,
6.2

Self
modifying
code

The source code for the Texas Instruments MSP-430
micro-controller used in the Power Management
Board of the DS200 contains the application of a
patch mandated by the microcontroller manufacturer
to fix a defect in the 1.10 and earlier versions of the
Texas Instruments boot loader. This is a COTS part
and the patch is unmodified and obtained directly
from the manufacturer. ES&S does not believe that a
mandatory, factory supplied COTS patch is subject to
the VVSG and regardless of jurisdiction the patch
does not in any way compromise the integrity of the
power board or the DS200 system. The patch as
applied by the ES&S code is unmodified from the
patch offered on the Texas Instruments web site. The
patch does not change and does not modify anything.
Rather, it fixes a flaw in the original boot loader that
allows the microcontroller to function correctly. The
power management board itself has no connection
whatsoever to the accumulation, storage or tabulation
of the election data. It is an ancillary device that is
completely separate from the main board. ES&S
does not believe the application of a COTS patch
from a microcontroller manufacturer violates the
intent of the cited section of the VVSG.

CPP ESSIM 7.7.0.0f Discrepanci
es CPP
ESSIM
7.7.0.0f
07182007.x
ls

26 IFCUtil.cp
p

CBalSt
yleNu
m::Co
mpare

Line 3693: validate input
argument (no validation,
two else clauses would
return 0 (equal) if one or
both of the values are
out of bounds for some
reason, which makes no
sense to this reviewer)

v.2:
5.4.2.a

Input
validation

The logic discrepancy is from the addition of empty
mandatory 'else' clauses. The function compares two
values and will make a comparison of two other
values nested within one of the first comparison tests.
The comparisons in this function can only have one of
three outcomes. The code explicitly tests for all three
possibilities and therefore requires a mandatory 'else'
clause which will be empty. Those two empty clauses
are unreachable, regardless of argument values, and
the logic will not fall through them. The function will
produce the exact same results, had the last 'else if'
clauses been coded as 'else' clauses. That would
make them the mandatory else clauses and eliminate
the empty 'else' clauses

CPP VIODIA
LOG

9.2.1.0c Discrepanci
es CPP
Shared
Utilities
9.2.0.0
05142008.x
ls

6 Vio
Shared
Files\Vio
Dialog\Ne
wILJWSC
32.cpp

SioRe
set_C
B

1) Parameter list is
incomplete in header
section.
2) "DCBptr" is not
validated.
3) Constants other than
"0" or "1" enumerated or
defined:0x11,0x13,512,4
,128.

v.1:
4.2.3.b
4.2.7 (a,
a.1-a.6)
v.2:
5.4.2.e
v.1:
4.2.7.b

2. Pointer
validation

The function that calls SioReset_CB() is called
SioReset(). The DCBptr is assigned in SioReset(),
and it is set to point at a persistent global variable in
the file. Therefore, the pointer DCBptr can never be
NULL. This global is also properly initialized, and the
"Port" parameter is verified. This pointer does not
need to be checked in SioReset_CB() because it will
always be pointing to this global variable. If for some
reason the pointer is passed to SioReset_CB() and it
is NULL, that indicates the microprocessor is not
executing the program code properly, and any
checking we would do would be pointless.

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

CPP VIODIA
LOG

9.2.1.0c Discrepanci
es CPP
Shared
Utilities
9.2.0.0
05142008.x
ls

7 Vio
Shared
Files\Vio
Dialog\Ne
wILJWSC
32.cpp

SioFlo
w

1) Need default case for
switch() statement .
2) Line 1262,1266: Need
exlicit comparison in if()
statement.

v.2:
5.4.2.f
v.2:
5.4.2.t

1.Default
case

There is no default case in the given switch statement
because we do not want the DCBptr settings to
change if we are given a "Cmd" value that we do not
recognize. We would only have an empty (no code)
default case at the end of the switch statement.

CPP ESSCR
PT1

1.1.0.0b Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

6 Source\Bl
owFish.c
pp

Permu
teFunc

"ct" is not validated. v.2:
5.4.2.e

Pointer
validation

The parameter “ct” is defined as a pointer to a
structure of the type “SBlowfishCipherTables”. If the
functions are called with a pointer to any other data
structure type, the compiler will generate an error.
The “ct” parameter is implicitly verified by the
compiler.

CPP ESSCR
PT1

1.1.0.0b Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

7 Source\Bl
owFish.c
pp

Blowfi
shInit

"ct" & "key" are not
validated.

v.2:
5.4.2.e

Pointer
validation

The parameter “ct” is defined as a pointer to a
structure of the type “SBlowfishCipherTables”. If the
functions are called with a pointer to any other data
structure type, the compiler will generate an error.
The “ct” parameter is implicitly verified by the
compiler. The parameter “key” is protected from
overflow by the parameter “keyLen” which is defined
in the comments as the length of the “key”. It is the
programmer’s responsibility to define the length of
“key” when the function is called. The internal data
structures are protected from “keyLen” being too
large by clamping the parameter to a maximum value
of “MAX_KEY_BYTES”.

CPP ESSCR
PT1

1.1.0.0b Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

8 Source\Bl
owFish.c
pp

Blowfi
shEncr
yptBlo
ck

"ct", "leftBlock" &
"rightBlock" are not
validated.

v.2:
5.4.2.e

Pointer
validation

The parameter “ct” is defined as a pointer to a
structure of the type “SBlowfishCipherTables”. If the
functions are called with a pointer to any other data
structure type, the compiler will generate an error.
The “ct” parameter is implicitly verified by the
compiler. The parameters “leftBlock” and “rightBlock”
are commented as “32 bit blocks of code to be
encrypted/decrypted. The programmer will insure
that these will only point to data that is to be
encrypted or decrypted.

CPP ESSCR
PT1

1.1.0.0b Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

9 Source\Bl
owFish.c
pp

Blowfi
shDec
ryptBlo
ck

"ct", "leftBlock" &
"rightBlock" are not
validated.

v.2:
5.4.2.e

Pointer
validation

The parameter “ct” is defined as a pointer to a
structure of the type “SBlowfishCipherTables”. If the
functions are called with a pointer to any other data
structure type, the compiler will generate an error.
The “ct” parameter is implicitly verified by the
compiler. The parameters “leftBlock” and “rightBlock”
are commented as “32 bit blocks of code to be
encrypted/decrypted. The programmer will insure
that these will only point to data that is to be
encrypted or decrypted.

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

CPP ESSCR
PT1

1.1.0.0b Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

10 Source\Bl
owFish.c
pp

Blowfi
shEncr
ypt

kgw -- this method is the
local method for the DLL
exported function
"EncryptData" which
was not reviewed in the
3% review, but which
also does not validate
any pointers or state in
its header that the input
array is expected to be
of size that is a multiple
of the block size or else
it will overflow. This
method also assumes
that input block length is
a multiple of block size.
Line 615 overflow
occurs.

v.2:
5.4.2.d

Overflow Blowfish is a “block encryption” algorithm. All block
encryption algorithms work in terms of some block
size. It is standard operating procedure to allocate
buffer space in terms of the block size of whatever
algorithm you are using. (Just the same as creating a
“char array” one byte longer that the max number of
characters so that there is room for the terminating
NULL character.) Therefore the arrays will not
overflow.

CPP ESSCR
PT1

1.1.0.0b Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

11 Source\Bl
owFish.c
pp

Blowfi
shDec
rypt

kgw-although one would
expect that a buffer for
decryption would be a
multiple of the size of a
block, line 664 overflows
the buffer because it
was not checked in
advance.

v.2:
5.4.2.d

Overflow Blowfish is a “block encryption” algorithm. All block
encryption algorithms work in terms of some block
size. It is standard operating procedure to allocate
buffer space in terms of the block size of whatever
algorithm you are using. (Just the same as creating a
“char array” one byte longer that the max number of
characters so that there is room for the terminating
NULL character.) Therefore the arrays will not
overflow.

CPP Election
Packag
er

1.0.0.0e Discrepanci
es CPP
Shared
Utilities vol2
1.0.1.0
05142008.x
ls

12 ElectionP
ackagerD
lg.cpp

(file) line 142 hard-coded
password (used at lines
1974, 1987, 1999)

v1:
6.4.2

Hard coded
password

The data structure being cited is the encryption key
used when encrypting/decrypting files in the Unity
system. This encryption key (note a password)
CANNOT change because both the creation and
receiving sizes of this feature must know the key to
be used to encrypt and then decrypt the packaged
data. This function is used when ES&S needs to
acquire election definition data from clients that code
their own elections and the respective election data is
Zipped up with an encryption key to protect it while in
transit for the client site to the ES&S support center.
This is a copy of the election data and the 'master'
copy of the election data remains resident on the
client system.

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

CPP VAT -
GetMar
ks

1.4.9 Discrepanci
es CPP
VAT (ESS
ScannerPri
nterLibrary
1.8.31-
GetMarks
1.4.9)
10152008.x
ls

3 ESSNY.c
pp

ipfEss
NYGet
XCom
pacted
Pixel

Line 223: validate input
arguments and pointers

v.2:
5.4.2.a
v.2:
5.4.2.e

Pointer
validation

We need to keep this routine streamlined and
optimized because it is a major bottleneck for the
scanning algorithms. This routine is often called over
a million times during a regular scan. If we add extra
code to validate input arguments then this will greatly
detract from the user's experience (it would take too
long to perform a scan).

The controls we provide to prevent the pointer from
overwriting out of bounds locations are as follows:

To be in bounds, vert must be between 0 and 5000
and horz must be between 0 and 2047. This is
because the input buffer is always g_image which is a
buffer of MAXSCANLINE (=5000) pointers pointing
into FM->image_buffer (defined in GETMARKS.H)
where each buffer is BYTES_PER_LINE=256 bytes
(2048 pixels which allows horz to range from 0-2047).
We ensure this is the case by simple code inspection
of all the calls to ipfEssNYGetCompactedPixel.
(Greater detail available upon request).

CPP VAT -
GetMar
ks

1.4.9 Discrepanci
es CPP
VAT (ESS
ScannerPri
nterLibrary
1.8.31-
GetMarks
1.4.9)
10152008.x
ls

4 ESSNY.c
pp

ipfEss
NYList
ToArra
y

Line 483: Provide
control for assigned
array indexed pointer

v.2:
5.4.2.e

Pointer
validation

Justification: the control is built into the way the loops
work in that routine that utilize that array index. Every
pass through the loop, which increments the array
index (which starts at 0), the next entry in the linked
list pEssNyList is retrieved. If that next entry is NULL
then the array index will not increase any further.
Therefore, the array index is constrained by the
number of entries in pEssNyList. The number of
entries in pEssNyList is definitely equal to the number
of calls to ipfEssNyListAdd following a call to
ipfEssNyListClear. Also, the size of the array is equal
to numTm in all the calls to ipfESSNYListToArray. So
we simply need to trace all calls of ipfEssNyListAdd
and confirm the number of calls after an
ipfEssNyListClear is <= the value of numTm in the
call to ipfEssNYListToArray. (Greater detail available
upon request).

CONFIDENTIAL - Attachment 2: Summary of Discrepancies - CONFIDENTIAL

3131 South Vaughn Way Suite 650 Aurora, CO 80014 Phone (303) 627-1110 Fax (303) 627-1221

SQL AIMS 1.3.54 Discrepanci
es SQL
AIMS
1.3.54
08062007.x
ls

1 dbo.Audit
LogAddIt
em.PRC

CREA
TE
proced
ure
AuditL
ogAdd
Item
(@strE
ventN
ame
varcha
r(100),

line 42 audit logging
optional. Numerous
places in code (4) turn
off audit logging and do
not transact the unit
operation that would
include turning it back
on. The specific
procedures are
IFCImport, IGImport,
IUnityImport &
spXMLImport. Additional
information: no related
trigger found.

v.1:
4.2.3.e

Single exit The audit logging is turned off explicitly and only at
the start of a massive election automated import
(from a standard import file set of one sort or another
-- be it XML or AIS or AccuVote MDB or whatever).
Logging is turned back on after that import is
completed. If the import process fails, the audit log
will contain entries of this failure and guide the user to
a resolution of the issue.

SQL AIMS 1.3.54 Discrepanci
es SQL
AIMS
1.3.54
08062007.x
ls

2 dbo.Ballot
RaceAdd.
PRC

CREA
TE
proced
ure
Ballot
RaceA
dd
(@intB
allotID
int,

line 49 multiple
database inserts not
transacted

v.1:
4.2.3.e

Single exit We do not believe Volume 1, Section 4.2.3.e requries
the implementation of database start / end transaction
processing when applications are performing
database updates. All database updates, other than
mass updating of tables from the import of election
data from an external resouce (as described in the
issue above) are captured in the AIMS audit log. Any
data I/O that fails to complete successfully is so noted
back to the AIMS user and is recorded in the audit log
for corrective action.

CPP Automa
rkEncod
er

1.0.105 Shared
Discrepanci
es:

5 Automark
Encoder
1.0.105\A
utomarkE
ncoder.cp
p

makek
ey

1) Parameters
"realkeyforward", and
"realkeyfinal" are not
validated.
2)Line 1425: Need
explicit comparison in if()
statement.
3) Constants other than
"0" or "1" enumerated or
defined: 7

v.2:
5.4.2.e
v.2:
5.4.2.t
v.2:
5.4.2.u

Pointer
validation

VBA AIMS 1.3.552 Shared
Discrepanci
es:

3 Election.c
ls

Electio
n.Refr
eshPr
opertie
s

Line 802: Need explicit
return in "Failure:"

v.2:
5.4.2.b

Explicit
return

